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The dependence of the enhancement of proton–electron double-
resonance images upon the mobility of the proton bearing mole-
cules, of the concentration of free radicals, and of the pulsed
saturating RF power is studied in a magnetic field of 16 mT. The
data exhibit a behavior which, in the potentially interesting region
of small free radical concentration, may differ substantially from
the high-concentration regime depending upon experimental con-
ditions. The results permit a clearer understanding of the factors
determining enhancement and contrast in images obtained by
dynamic nuclear polarization. © 1998 Academic Press
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I. INTRODUCTION

The possibility of taking advantage of the enhancement avail-
able through dynamic nuclear polarization (DNP) via the Over-
hauser effect for1H NMR imaging at very low magnetic fields has
attracted considerable interest in recent years (1–5). Although
several problems remain unresolved, especially concerning poten-
tial biological or medical applications, none of these problems
appear to be completely insurmountable and an intensive effort to
overcome some of the obstacles is in progress.

One aspect which deserves special attention is the understand-
ing of the factors which determine enhancement and contrast in
proton–electron double-resonance imaging (PEDRI). In normal
magnetic resonance imaging (MRI),T1 andT2 contrasts are de-
termined by the spectral densities of the fluctuating1H–1H dipolar
fields modulated by random molecular motion.T1 contrast, for
example, is sensitive to differences in spectral weights at the
proton Larmor frequency. In the case of PEDRI, the spectral
density function of the electron–proton interaction plays a major
role. Overhauser enhancement in free radical solutions can be
appreciable only when molecular motion takes place in a time
scale which is fast or comparable with the inverse electronic
Larmor frequency, which is almost three orders of magnitude
larger than the nuclear Larmor frequency. Hence, contrast in
PEDRI is expected to depend upon molecular mobility in a quite
different manner than conventional MRI in the same value of
magnetic field.

Although the basic principles which determine the effect of
molecular motion upon Overhauser enhancement are quite well
established (6, 7), the competing requirements peculiar to
PEDRI in low magnetic fields seem to justify some reexami-
nation. Nicholsonet al. (8) have recently studied this problem
and determined parameters which describe the image depen-
dence on viscosity in glycerol–water mixtures. A large reduc-
tion of the enhancement was observed in a 2 mMfree radical
concentration, as the viscosity increased fromh 5 1 cP (pure
water) toh 5 60 cP (71% glycerol/29% water by volume at
24°C). In this paper we present the results of measurements of
Overhauser enhancement performed over a range of concen-
trations, viscosities, and saturating RF power in glycerol–water
mixtures. Our results suggest that, at low concentrations of free
radical, the behavior differs from that reported in Ref. (8) and
appears to be somewhat less restrictive, regarding the accessi-
bility of slower molecular motions, than expected from mea-
surements performed in the high-concentration regime. Fur-
thermore, the role of the timing of the saturating pulse as an
operational parameter for controlling contrast in PEDRI im-
ages at low radical concentrations is examined.

II. THEORY

The effect of molecular mobility upon enhancement of the
NMR signal through DNP has been studied by several authors
(6–8). The basic conclusions can be obtained by the procedure
employed to derive Solomon’s equations (9). If one considers,
instead of a single nuclear spin as in Ref. (9), a pair of 1H
nuclei (I 5 1/ 2) belonging to the solvent molecule with
couplings to an unpaired electron spinS 5 1/ 2 of a dissolved
free radical, the following expression (6) for the enhancement
E can be derived,

E 5 ^I z&/I 0 5 1 2 rfs|gs|/gI, [1]

where^I z& denotes the expectation value of the dynamic nu-
clear polarization,I0 is its thermal equilibrium value,s denotes
the saturation parameter, andgs andgI are, respectively, elec-
tronic and nuclear gyromagnetic ratios. In the extreme narrow-
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ing limit, when the inverse electronic Larmor frequency is
larger than the characteristic correlation time of the molecular
motion, the coupling parameterr can be shown to have a value
of 10.5 for dipolar electron–nucleus interactions and a value
of 21 for purely scalar couplings (6).

The leakage factorf in Eq. [1] accounts for the loss of
dynamic polarization caused by spin–lattice relaxation of nu-
clei within the solvent molecules via proton–proton dipolar
couplings. It is therefore sensitive to the motion depending also
upon the concentration of free radicals. It can be expressed in
a relatively simple manner as (6, 7)

f 5 1 2 T1/T10, [2]

where 1/T1 denotes the total nuclear spin–lattice relaxation rate
consisting of a sum of the free radical contribution and the
intrinsic nuclear relaxation rate of the solvent molecules de-
noted by 1/T10.

If the condition for extreme narrowing is not satisfied, it can be
more convenient to combine the product of the coupling param-
eter and the leakage factor into a single expression which will be
shown to display explicitly the departure of the enhancement from
the extreme narrowing value. For purely dipolar electron–nucleus
interactions this product can be written as

rf 5 ~W2 2 W0!/~W2 1 W0 1 2W1 1 2v1 1 2v2!. [3]

HereWM (M 5 0, 1, 2) denote transition probabilities per unit
time caused by terms in the electron–nucleus dipole–dipole
interaction randomly modulated by the molecular motion.
They are labeled according to the change in the total magnetic
quantum numberM 5 mI 1 ms. Thus W0 corresponds to
DM 5 0, W1 to |DM| 5 1 (but Dms 5 0), andW2 to |DM|
5 2. Similarly, the termsvm (m 5 1, 2) represent transition
probabilities per unit time caused by terms in the nuclear
dipole–dipole interaction with |DmI| 5 1 or 2, respectively.

The nuclear spin–lattice relaxation times of Eq. [2] are
simply related to the transition probabilities of Eq. [3] (9). Thus
1/T1 2 1/T10 5 R(v) 5 W2 1 W0 1 2W1 and 1/T10 5 2(v1

1 v2), where we have introduced the radical-induced relax-
ation rateR(v), expected to be proportional to the concentra-
tion of free radicals (10).

When the molecular motion is not fast enough for the
extreme narrowing condition to hold, it is necessary to intro-
duce correlation functionsJ(M)(v) and J(m)(v) for the elec-
tron–nucleus and nucleus–nucleus dipole–dipole interactions,
respectively. It is also convenient to introduce reduced spectral
density functions for the motion defined asj (v) 5 J(M)(v)/
J(M)(0) andj(v) 5 J(m)(v)/J(m)(0), respectively. Moreover,
if the relevant correlation time, albeit long compared with the
inverse electronic Larmor frequency, is still short compared
with the inverse proton Larmor frequency, the following ap-

proximations are possible for the values of the correlation
functionsJ(M)(v) andJ(m)(v):

J~0!~vI 2 vS! > J~0!~vS!, J~1!~vI! > J~1!~0!,

J~2!~vI 1 vS! > J~2!~vS!, [4a]

J~1!~vI! > J~1!~0!, J~2!~2vI! > J~2!~0!. [4b]

vS/2p in Eqs. [4] denotes the electronic Larmor frequency
whereasvI/2p denotes the much smaller nuclear Larmor fre-
quency. For the glycerol–water mixtures used in our experi-
ments at room temperature and very low magnetic fields, the
assumption of an extreme narrowing condition with respect to
vI in Eqs. [4] can be considered to be a good approximation
although it may not hold for more viscous fluids or high
magnetic fields.

With the approximations of Eqs. [4], the transition proba-
bilities of Eq. [3] can be written in terms of their corresponding
dipolar spectral density functions as (10)

W0 < gI
2gs

2\2S~S1 1!~1/12!J~0!~0! j ~vs! [5a]

W1 < gI
2gs

2\2S~S1 1!~3/4!J~1!~0! [5b]

W2 < gI
2gs

2\2S~S1 1!~3/4!J~2!~0! j ~vs!, [5c]

with J(0)(0):J(2)(0):J(1)(0) 5 6:4:1.Furthermore, Eq. [1] and
Eq. [3] yield the result

s

1 2 E
5 ~2J 1 1!

gI

|gs|
SW0 1 W2 1 2W1 1 2~v1 1 v2!

W2 2 W0
D ,

[6]

where the number of electron hyperfine lines has been included
in Eq. [6] through the factor 2J 1 1. For the widely used
nitroxide radicals such as TEMPO (2,2,6,6-tetramethyl-1-pip-
eridinyloxy), the relevant nuclear spin quantum number isJ 5
1 for 14N, whereas for15N isotopically enriched nitroxide
radicals one hasJ 5 1/ 2.

Equation [6] can be written in a more useful form. Adding
and subtracting a term 2W1j (vs) in the numerator of Eq. [6]
one notices from Eqs. [5] thatW0 1 W2 1 2W1j (vs) 5
R(0) j (vs) and 2W1 5 (3/10)R(0), whereR(0) is the radical-
induced nuclear spin–lattice relaxation rate at zero frequency.
Furthermore, from Eqs. [5], the denominator can also be writ-
ten as W2 2 W0 5 (1/ 2)R(0) j (vs) which, after a few
manipulations, leads to the following expression:

s

1 2 E
5 2~2J 1 1!

gI

|gS|
~1/10!S7 1

3

j ~vS!
D

3 F1 1 S 1

CK~0!T10~0!D 1

~ 1
10

!~7j ~vS! 1 3!G . @7#
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In Eq. [7], 1/T10(0) 5 2(v1 1 v2) denotes the intrinsic solvent
nuclear spin–lattice relaxation rate at zero frequency. The
radical-induced relaxation rate at zero frequency has been
written asR(0) 5 CK(0), whereC is the molar concentration
of radicals andK(0) is the zero-frequency relaxivity.

Although the right-hand side of Eq. [7] describes the depen-
dence of the enhancement upon molecular motion and free
radical concentration through the productrf, the saturation
parameters on the left-hand side of Eq. [7] may also depend
upon the same variables. If irradiation by a rotating magnetic
field of amplitudeB2 takes place at the center frequency of one
of the hyperfine components one has from Bloch’s equations
(6)

s 5
gS

2B2
2T1eT2e

1 1 gS
2B2

2T1eT2e
, [8]

whereT1e andT2e denote electronic spin–lattice and spin–spin
relaxation times, respectively.

The mechanisms responsible for ESR linewidths in free
radical solutions have been extensively studied (11, 12). In
spite of the complexities of the problem, especially when
exchange and dipole–dipole interactions between electron
spins cannot be ignored, some general statements can be made
without going into great detail. The transverse relaxation rate
1/T2e 5 1/T2e

| 1 1/T1e
| contains a secular term 1/T2e

| and a
lifetime broadening, nonsecular, term 1/T1e

| . For small free
radical concentration and low viscosity, both 1/T2e

| and 1/T1e
|

are often dominated by motion-induced modulation of intramo-
lecular anisotropic interactions (12). Thus, in this regime,
where we denote the transverse relaxation rate by 1/T2e

(0), one
can expect a saturation parameters which is independent of
free radical concentration although it may depend on viscosity.
Hence, from Eq. [7], a linear dependence of1/(1 2 E) as a
function of 1/C should be expected in this regime.

As the free radical concentration is increased, different re-
gimes may become dominant depending upon the concentra-
tion level, the viscosity, the value ofT2e

(0), and the strengths of
exchange and dipole–dipole interactions. Following Atkins
and Kivelson (12) we introduce two parameters denoted byt1

and t2. They represent the characteristic time two radical
molecules spend adjacent to each other and the time between
collisions, respectively. Their approximate values can be ob-
tained from the theory of Brownian motion and are given by
(11)

t1 5 phar
3/kT [9a]

t2 5 750h/NAkTC, [9b]

wherear represents a spherical equivalent radius of the radical
molecule,NA is Avogadro’s number,h is the viscosity, andk
is Boltzmann’s constant.

A situation of interest for our problem occurs when the
exchange interaction between neighboring electron spins just
begins to play a role. If the interaction parameter defined asa2

5 A2t1
2, whereA is the effective exchange integral, is small

(a2 ! 1) and furthermoreT2e
(0) @ t2 . t1, the secular

linewidth of each hyperfine line begins to increase. A contri-
bution to the width of order 1/T2e

(e) 5 a2/t2 has been predicted
in this regime (12). Thus, from Eqs. [9] one can write for the
transverse relaxation rate

1/T2e 5 Ap2NAar
6hC/750kT 1 1/T2e

~0!, [10]

where the second term in the right-hand side of Eq. [10] does
not depend upon the free radical concentration whereas the first
term is proportional to the producthC. It is clear from Eq. [10]
that, for a given value ofC, the exchange contribution is larger
the higher the viscosityh.

Equations [7]–[10] facilitate the study of the various effects
which contribute to the enhancement by grouping them into
three categories. Dynamical effects due to random molecular
motion are described by the viscosity and the reduced spectral
density function and are separated from effects caused by the
concentration of free radicals. Furthermore,R(0)T10(0) in Eq.
[7] is a structure-dependent factor which depends mainly upon
internuclear distances and effective “molecular radii” of sol-
vent and free radical molecules.

III. EXPERIMENTAL DETAILS

PEDRI was performed in a homebuilt full-body imaging
system operating in a magnetic field of 16 mT (13). A “head
coil,” normally employed for MRI at a proton frequency of 680
kHz, was used as a NMR receiver coil with the irradiation coil
for the ESR inside it. The pulse sequence employed in the
PEDRI experiments differed from the SE (spin-echo) se-
quence, used in MRI, only in that it was preceded by a
saturating pulse of durationtw applied within the repetition
time interval TR and in that the slice-selection gradient was
absent.

The phantoms employed in the PEDRI experiments were
10-mm-diameter tubes filled with approximately 10 ml of
TEMPO solutions of various concentrations in solvents with
different viscosities. The tubes were placed vertically within a
10-mm-diameter coil made of two turns of silver wire which
was tuned and impedance matched to 50V at a frequency of
405 MHz. This corresponds to the lowest frequency hyperfine
line of TEMPO in a magnetic field of 16 mT. Enhancements
were determined from longitudinal PEDRI profiles through the
axis of the cylindrical phantoms.

RF power for ESR irradiation at a frequency of 405 MHz
was supplied by Minircuits ZHL-2-12 and ZHL-9000 ampli-
fiers. The power input to the matched load was monitored by a
Thruline wattmeter (Bird Electronic Corp.) with power levels
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varying between 0.85 and 10.4 W. At the highest power level,
some heating was noticed and the steady-state temperature was
measured in order to have a more accurate estimate of the
viscosity during the PEDRI experiments.

Following Nicholsonet al. (8) we employed glycerol–water
mixtures as solvents of controllable viscosity and well-known
NMR relaxation mechanisms. The viscosities of two of the
glycerol–water mixtures studied were measured at various
temperatures using a Brookfirld RVT viscosimeter. At 28°C
the measured viscosities wereh1 5 81 cP (solvent 1) andh2 5
39 cP (solvent 2). Solvent 3 was pure water withh3 5 1 cP.

PEDRI measurements were performed for various free rad-
ical concentrations and the concentration dependences of the
enhancements were measured in all three solvents and not only
with water as a solvent as in Ref. (8). Water solutions of
TEMPO were prepared using deionized water equilibrated in
air. Freshly prepared concentrated water solutions were next
diluted with glycerol until obtaining the desired viscosities and
concentrations which ranged between 40 and 0.25 mM.

IV. RESULTS AND DISCUSSION

Figure 1a shows measured values of1/(1 2 Et) as a
function of inverse free radical concentration 1/C in water–
glycerol mixtures of various viscosities. Irradiation power was
10.4 W with tw 5 1 s. These data show some agreement with
the predictions of Eqs. [7]–[10]. Moreover, they also seem to
exhibit some discrepancies which, as will be discussed below,
can be quite well understood.

For low concentrations of free radical the data of Fig. 1
exhibit a nearly linear behavior of1/(1 2 Et) with 1/C in all
three solvents. This agrees with the prediction of Eq. [7]
provided that the saturation parameters can be assumed to be
independent ofC. However, with increasing free radical con-
centrations this assumption is expected to break down as the
term proportional tohC in Eq. [10] becomes dominant. This
should lead to a crossover from the regime where1/(1 2 E)
decreases linearly with decreasing values of 1/C to one in
which it increases with decreasing 1/C, as observed in Fig. 1.
Moreover, these data also confirm that the crossover takes
place at a value ofC which is lowest for the most viscous
solvent, in qualitative agreement with Eq. [10].

From Eqs. [7] and [8] one concludes that the slope of1/(1 2
E) as a function of 1/C as well as the intercept of the linear
portion extrapolated to 1/C 5 0 should both increase as the
characteristic correlation time for motion becomes longer.
However, the behavior shown by the data in Fig. 1a appears to
contradict this prediction. The slope of the linear region cor-
responding to low free radical concentrations appears to be
larger for water (h 5 1 cP) than for solvent 2 (h 5 39 cP).
Also the enhancements observed for solvent 2 in this region are
larger than those for water, although in the high free radical
concentration region the situation appears to reverse. More-
over, the enhancements in the low-C region can be seen to be

less sensitive than those in the high-C region to a change from
the most viscous solvent 1 to water.

These apparently contradictory aspects of the data of Fig. 1
can be understood by examining an operational parameter
which appears to play a central role in determining motion-
related contrast in PEDRI. From an operational point of view,
potential applications of the present imaging scheme, at a field
of 16 mT, would almost certainly require field-cycled PEDRI
(14) where the duration of the ESR irradiation is limited to a
finite time intervaltw preceding the acquisition period. This
limitation of irradiation time is convenient for various reasons,
such as minimizing heating effects and reducing unwanted
interference during data acquisition. The electronic magnetiza-

FIG. 1. (a) Values of1/(1 2 Et), as a function of the inverse concentra-
tion for TEMPO solutions in three solvents: (Œ) solvent 1, (�) solvent 2, and
(■) solvent 3.Et are values of the enhancements measured with an irradiation
time tw 5 1 s and an applied RF power of 10.4 W. (b) Values of1/(1 2 E)
obtained from the data of (a) by correcting for the finite irradiation time. The
solid lines are theoretical fits obtained from the dashed line.
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tion transfer timetw can be seen to strongly influence motion-
related contrast in the low free radical concentration region and
can therefore be employed as a control parameter.

Since Eq. [7] has been derived from Solomon’s equations
(9) under the assumption of a steady state, whereby the pop-
ulations of the nuclear Zeeman levels are no longer changing,
a correction is needed for a finite magnetization transfer time
tw. In this case, the time-dependent solution of Solomon’s
equations is required in order to correct the value of1/(1 2
Et), obtained with finitetw. In this manner it can be shown that
multiplication of 1/(1 2 Et) by the factorF(tw, C) 5 1 2
exp(2tw/T1) 5 1 2 exp[2tw(1/T10 1 CK)] yields directly
the steady-state value1/(1 2 E).

In order to check the effect of finite values oftw, enhance-
ments for all three solvents were measured for various
values oftw at three different concentrations. It was found
that for the valuetw 5 1 s used in Fig. 1a, a correction factor
F(tw, C) ' 1 could be assumed for solvent 2 and solvent 1
over the entire concentration range. For solvent 3, the cor-
rection factor was found to be significantly smaller than
unity for low values ofC and could be described quite
closely by the expression

F~tw, C! 5 1 2 exp$2@tw/T10~0!#@1 1 CK~0!T10~0!#%,

[11]

where the valueT10(0) 5 2.65 s, for water used in our
solutions, was determined by an independent measurement
in the applied magnetic field of 16 mT. Furthermore the
relaxivity K(0) was also determined separately from spin–
lattice relaxation measurements in solutions of known free
radical concentrations. From these two measurements the
value K(0)T10(0) 5 1.8 (mM)21 was found for water solu-
tions of TEMPO.

Figure 1b shows plots of1/(1 2 E) obtained from the data
of Fig. 1a after correction for the finite electronic magneti-
zation transfer timetw 5 1 s employed in these data. Since
the conditionvIt0 ! 1 is satisfied for all three solvents, the
values ofT10 are expected to be inversely proportional to the
correlation times and also to the viscosities. Hence for
water, with the lowest viscosity of all three solvents, one has
T10(0) (2.65 s). tw (1 s), which from Eq. [11] leads to a
decreasing enhancement with decreasing concentration.
Thus, despite that for water it is possible to assumej(vs >
1 in Eq. [7], the slope of1/(1 2 Et) as a function of 1/C can
be larger, in the low free radical concentration region, than
that for solvent 2.

For solvents 1 and 2, with much higher viscosities, the
conditionT10 , tw prevails and the effect of a finite value of
tw is negligible fortw 5 1 s as shown in Fig. 1b.

A further check of Eq. [7] for solvent 3 (water), where the
condition j(vs) > 1 prevails, is furnished by the slope of
s/(1 2 E) as a function of 1/C for low C. This slope must

be consistent with the independently determined value
K(0)T10(0) 5 1.8 (mM)21 but its measurement requires a
determination of the saturation parameters. The intercept of
the low-C region, straight line portion ofs/(1 2 E), extrap-
olated to 1/C 5 0, provides an additional check of Eq. [7],
also requiring a measurement of the saturation parameters.

The saturation parameterss for various values ofC and
power levels for solvents 1–3 were determined by measuring
the enhancement as a function of applied RF power (6, 8).
From Eqs. [7] and [8] a plot of1/(1 2 E) as a function of 1/P,
whereP denotes the applied RF power, should yield a straight
line. From the intercept of this line, when extrapolated to
1/P 5 0, one can obtain the saturation parameters for any
given power and concentration.

Figure 2 shows a plot of1/(1 2 E) as a function of 1/P for
a water solution of TEMPO withC 5 0.34 mM. The RF
power applied to the resonant circuit at a frequency of 405
MHz ranged from 10.4 to 0.86 W. The data were corrected for
the finite durationtw 5 1 s of the irradiation pulse, as described
earlier.

Figure 3 shows plots of1/(1 2 Et) for water solutions of
TEMPO as a function of 1/C for two values of the applied
power. The larger enhancements correspond toP 5 10.4 W,
whereas the smaller enhancements correspond toP 5 0.86
W. From the data of Fig. 2, one obtains for the saturation
parameterss(10.4 W) 5 0.76 ands(0.86 W) 5 0.20 which
enables one to also plots/(1 2 E) in Fig. 3. The correction
for tw 5 1 s was performed using Eq. [11] for both values
of power. The data suggest thats/(1 2 E) values obtained
with P 5 10.4 W andP 5 0.86 W are ingood agreement.
Moreover, the straight line shown in Fig. 3 is a plot of the

FIG. 2. Values of1/(1 2 E) as a function of 1/P, whereP denotes the
applied irradiation power for a 0.34 mM water solution of TEMPO.
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theoretical expression fors/(1 2 E) given by Eq. [7] with
j(vs) ' 1 neglecting differences in the populations of the
hyperfine levels. Hence, a value 2(2J 1 1)gI/|gs| ' 1/110
with J 5 1 was assumed and the numerical valueK(0)T10(0)
5 1.8 (mM)21 was determined from independent measure-
ments as explained earlier. The overall consistency appears
to be quite satisfactory.

Although the data of Fig. 3 show that, to a good approxi-
mation, the saturation parameter for water solutions of TEMPO
is, at least forC , 4 mM, only a function of power and not of
C, for the more viscous solvents the situation is different.
Figure 4 shows values of1/(1 2 E) as a function of 1/P for
solvent 1 at two different free radical concentrations,C 5
0.34 mM andC 5 2 mM. From Fig. 4 one obtains saturation
parameterss(10.4 W)5 0.5 forC 5 0.34 mM ands(10.4 W)
5 0.4 for C 5 2 mM. This confirms that the crossover in
1/(1 2 E) observed in Fig. 1 for solvent 1 atC ' 2 mM is
actually caused by a decrease of the saturation parameter as
suggested by Eqs. [8]–[10].

Finally, the role of the reduced spectral density function,
which with increasing viscosity could affect the slopes and the
1/C 5 0 intercepts of the straight lines in the low-C region of
Fig. 1b, should be addressed. A specific form ofj (v), derived
from Torrey’s theory of relaxation by translational diffusion
(15, 16), is known to be quite successful in the description of
spin–lattice relaxation of pure glycerol in a wide range of
temperature and frequency (16). The correlation timestN ob-
tained from this function have been shown to agree with those

obtained from dielectric relaxation measurements over a wide
range of values (17). For x 5 vtN, the reduced spectral
density function can be written as

j ~ x! 5 A~ x!@B~ x! 1 C~ x! 1 D~ x!#, [12]

with A( x) 5 3.76/=0.5x5, B( x) 5 0.5(x 2 1),

D~ x! 5 B~ x!sin~2Î0.5x!exp~22Î0.5x!, [13a]

and

C~ x! 5 @0.5x 1 2Î0.5x 1 0.5#

3 cos~2Î0.5x!exp~22Î0.5x!. [13b]

From Eq. [7], the ratio of the 1/C 5 0 intercepts of 1/12
E for solvents 1 and 2, for example, should be given by

G1/G3 5 ~s3/s1!
S7 1

3

j ~ x1!
D

S7 1
3

j ~ x3!
D , [14]

with an analogous expression for solvent 2 relative to solvent
3. Here s3 and s1 are previously determined values of the
saturation parameters, for both solvents in the low-concentra-
tion regime.

Although Stokes’ law has been shown to be only approxi-

FIG. 3. Values of1/(1 2 E) as a function of inverse concentration 1/C
in water solutions of TEMPO for two values of applied power: (h) 0.86 W and
(‚) 10.4 W. The data were corrected for the finite irradiation timetw 5 1 s
employed in the measurements. Also shown are the corresponding values (■)
and (Œ) of s/(1 2 E), wheres denotes the previously determined saturation
parameters. The straight line is a theoretical prediction.

FIG. 4. Values of 1/(1 2 E) as a function of inverse power 1/P for
TEMPO solutions in solvent 1 with two different concentrations. (h) C 5 2
mM and (‚) C 5 0.34 mM.
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mately valid in glycerol (18), it may still be used, in a limited
viscosity range, to scale the correlation times. Once a value of
x1 5 vstN(1) is assumed, the value ofx2 5 vstN(2) would
then be determined bytN(2)/tN(1) 5 V(2)h(2)/V(1)h(1),
whereV(1) andV(2) denote molecular volumes of solvents 1
and 2, as required by Stokes’ law. For solvent 3 (h 5 1 cP) the
scaling should be less reliable but, since in this casex3 5
vstN(3) ! 1 and since values relative to water are treated in
Eqs. [14] and [15], the results are not too sensitive to the exact
value ofx3 and one may still use Stokes’ law. Therefore, once
a value ofx1 is assumed, bothx2 andx3 can be considered to
be determined by this scaling.

From Eq. [7], a ratio of the slopes of the linear region of Fig.
1b can also be obtained. It is given by

S1/S3 5 ~s3/s1!
S7 1

3

j ~ x1!
D

~7j ~ x1! 1 3!

~7j ~ x3! 1 3!

S7 1
3

j ~ x3!
D

3 SK~3!~0!T10
~3!~0!

K~1!~0!T10
~1!~0!D , [15]

with an analogous expression for solvent 2 relative to sol-
vent 3.

As mentioned earlier, the ratioe13 5 K(3)(0)T10
(3)(0)/

K(1)(0)T10(0) is a purely geometrical factor whose numerical
value can be determined from a fit to the data of Fig. 1b.
Moreover, from the theory of nuclear relaxation in liquids,
assuming the validity of Stokes’ law (10) and predominantly
rotational diffusive motion inT10(0), one canestimate

e# 13 < Sb3

b1
D 6Sa1

a3
D 2S ~1 1 a1/ar!

2

~1 1 a3/ar!
2D .

Here b3 and b1 denote proton–proton distances in solvents 3
and 1,a3 anda1 are the corresponding “molecular radii,” and
ar denotes the radius of the radical molecule.

Since solvent 1 and solvent 2 contain 87% (w/w) and 79%
(w/w) of glycerol, respectively, it seems reasonable to approx-
imate the ratiose13 ' e23. Furthermore, using values for pure
glycerol relative to water one should obtain an upper limit of
e13 ande23. Sincee13 is rather insensitive to changes in the free
radical radius we can adoptar ' 3 Å, a typical value for
nitroxide radicals. Takinga1 5 2.49 Å forpure glycerol,a3 5
1.74 Å forwater,b3 5 1.58 Å for theproton–proton distance
in water, andb1 5 1.78 Å for theaverageb1 5 ^1/r i , j

6 &21/6

involving all proton–proton pair distances in a glycerol mole-
cule, one obtainse#13 5 1.7. If translational diffusion is also
included inT10(0) this value would be expected to be approx-
imately 20% higher.

Usingx1 ande13 5 e23 as the only two adjustable parameters
it is possible to obtain from Eqs. [12]–[15] values ofG1/G3,

G2/G3, S1/S3, andS3/S3 which fit the experimental data of Fig.
1b. AssumingV(1)/V(3) ' V(2)/V(3) 5 (a1/a3)3 5 2.93 and
using the measured values at 0.34 mM,s3(10.4 W) 5 0.76,
s1(10.4 W)5 0.5, ands2(10.4 W)5 0.7, one obtainsS1/S3

5 3.085,S2/S3 5 1.883,G1/G3 5 1.78, andG2/G3 5 1.2. From
Fig. 1b one concludes that, within the experimental accuracy,
these values agree quite well with the ratios of the slopes and
intercepts relative to water in the linear region of low radical
concentrations.

The two parameters found from the fit werex1 5 0.47 and
e13 5 e23 5 1.3; this last value, albeit somewhat lower as
expected, is surprisingly consistent with the theoretical es-
timate for pure glycerol relative to water. From the value of
x1 5 0.47, therole of j(vs) can be determined for the data of
Fig. 1b. One needs to calculatej(x1), j(x2), andj(x3) given by
Eqs. [14] and [15] with the scaled valuesx1, x2, andx3 which
yield correct slopes and intercepts of Fig. 1b. The values
found for water werex3 5 0.002 and j(x3) 5 0.976, in
agreement with the expected conditionvstN(3) ! 1. For
solvent 1 (81 cP) we foundx1 5 0.47 and j(x1) 5 0.62,
indicating that in this regime, characterized by the condition
vstN(1) ' 1, an appreciable effect fromj(vs) should be
present. Finally, for solvent 2 (39 cP) we findx2 5 0.226 and
j(x2) 5 0.732,suggesting a somewhat smaller effect ofj(vs)
in this case.

V. CONCLUSIONS

The work of Nicholsonet al. (8), where all measurements
with glycerol–water mixtures were performed at a free rad-
ical concentration ofC 5 2 mM, has been extended to lower
concentrations. This permits a better understanding of the
effect of motion upon PEDRI enhancement at low values of
C. In this low-concentration regime (C , 1 mM in Fig. 1b)
the loss of enhancement with increasing viscosity was found
to be less severe than at high concentrations (C . 2 mM in
Fig. 1b). It was also found that the duration of the electronic
magnetization transfer time plays a central role in this
low-concentration region and could act as a contrast control
parameter. Viscosity was found to play a different role at
low radical concentrations than at high values ofC, espe-
cially for short transfer times. Various effects influencing
enhancement were separately analyzed and compared with
theoretical predictions.
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